Physics of the Standard Model

Sven-Olaf Moch

Sven-Olaf.Moch@desy.de

DESY, Zeuthen

406th WE-Heraeus-Seminar Physics at the Terascale, April 28, 2008, Bad Honnef

Proton-proton scattering

- Large rates expected for many Standard Model processes
 - b-quarks
 - W^{\pm} and Z-bosons
 - jets (even with high p_t-cuts)
 - t-quarks
- New physics search requires precision predictions
 - Higgs production
 - superpartners in MSSM (neutralinos, charginos, squarks, gluinos, ...)
 - Kaluza-Klein modes in models with 10⁻³ extra dimensions
- LHC will be a QCD machine
 - perturbative QCD is essential and established part of toolkit

(we no longer "test" QCD)

Perturbative QCD at colliders

- Hard hadron-hadron scattering
 - constituent partons from each incoming hadron interact at short

separate sensitivity to dynamics from different scales

$$\sigma_{pp\to X} = \sum_{ijk} f_i(\mu^2) \otimes f_j(\mu^2) \otimes \hat{\sigma}_{ij\to k} \left(\alpha_s(\mu^2), Q^2, \mu^2 \right) \otimes D_{k\to X}(\mu^2)$$

• factorization scale μ , subprocess cross section $\hat{\sigma}_{ij \to k}$ for parton types i, j and hadronic final state X

Hard scattering cross section

- Standard approach to uncertainties in theoretical predictions
 - variation of factorization scale μ : $\frac{d}{d \ln \mu^2} \sigma_{pp \to X} = \mathcal{O}(\alpha_s^{l+1})$

$$\sigma_{pp\to X} = \sum_{ijk} f_i(\mu^2) \otimes f_j(\mu^2) \otimes \hat{\sigma}_{ij\to k} \left(\alpha_s(\mu^2), Q^2, \mu^2 \right) \otimes D_{k\to X}(\mu^2)$$

- Parton cross section $\hat{\sigma}_{ij \rightarrow k}$ calculable pertubatively in powers of α_s
 - constituent partons from incoming protons interact at short distances of order $\mathcal{O}(1/Q)$
- Parton luminosity $f_i \otimes f_j$
 - proton: very complicated multi-particle bound state
 - colliders: wide-band beams of quarks and gluons
- Final state X: hadrons, mesons, jets, ...
 - fragmentation function $D_{k\to X}(\mu^2)$ or jet algorithm
 - interface with showering algorithms (Monte Carlo)

Approaches to the calculation of σ_{had}

- LO (leading order)
 - Automated tree level calculations in Standard Model, MSSM, (Madgraph, Sherpa, Alpgen, CompHEP, ...)
 - LO + parton shower
 - String inspired techniques
- NLO (next-to-leading order)
 - Analytical (or numerical) calculations of diagrams yield parton level Monte Carlos (NLOJET++, MCFM, ...)
 - NLO + parton shower (MC@NLO, VINCIA)
- NNLO (next-to-next-to-leading order)
 - selected results known (mostly inclusive kinematics)
- N³LO (next-to-next-to-next-to-leading order)
 - very few ...

Approaches to the calculation of σ_{had}

- LO (leading order)
- Automated tree level calculations in Standard Model, MSSM,
 (Madgraph, Sherpa, Alpgen, CompHEP, ...)
 - LO + parton shower
 - String inspired techniques
 - NLO (next-to-leading order)
 - Analytical (or numerical) calculations of diagrams yield parton level Monte Carlos (NLOJET++, MCFM, ...)
 - NLO + parton shower (MC@NLO, VINCIA)
 - NNLO (next-to-next-to-leading order)
 - selected results known (mostly inclusive kinematics)
 - N³LO (next-to-next-to-next-to-leading order)
 - very few ...

Approaches to the calculation of σ_{had}

- LO (leading order)
- Automated tree level calculations in Standard Model, MSSM,
 (Madgraph, Sherpa, Alpgen, CompHEP, ...)
 - LO + parton shower
 - String inspired techniques
 - NLO (next-to-leading order)
 - Analytical (or numerical) calculations of diagrams yield parton level Monte Carlos (NLOJET++, MCFM, ...)
 - NLO + parton shower (MC@NLO, VINCIA)
 - ← level of talk here
 - NNLO (next-to-next-to-leading order)
 - selected results known (mostly inclusive kinematics)
 - N³LO (next-to-next-to-next-to-leading order)
 - very few ...

Parton luminosity

Feynman diagrams in leading order

• Proton in resolution $1/Q \rightarrow$ sensitive to lower momentum partons

Parton luminosity

Feynman diagrams in leading order

 Proton in resolution 1/Q sensitive to lower momentum partons

- Evolution equations for parton distributions f_i
 - predictions from fits to reference processes (universality)

$$\frac{d}{d\ln\mu^2} f_i(x,\mu^2) = \sum_k \left[P_{ik}(\alpha_s(\mu^2)) \otimes f_k(\mu^2) \right](x)$$

Splitting functions P

$$P = \alpha_s P^{(0)} + \alpha_s^2 P^{(1)} + \alpha_s^3 P^{(2)} + \dots$$

NLO: standard approximation (large uncertainties)

Parton distributions in proton

- Parameterization (bulk of data from deep-inelastic scattering)
 - structure function $F_2 \longrightarrow$ quark distribution
 - scale evolution (perturbative QCD) \longrightarrow gluon distribution

Parton distributions in proton

- Parameterization (bulk of data from deep-inelastic scattering)
 - structure function $F_2 \longrightarrow$ quark distribution
 - scale evolution (perturbative QCD) \longrightarrow gluon distribution

Precision HERA data on F_2

PDFs from HERA to LHC

Scale evolution of PDFs in Q over two to three orders

Perturbative stability of evolution

• Scale derivatives of quark and gluon distributions at $Q^2 \approx 30 \text{ GeV}^2$

Perturbative stability of evolution

• Scale derivatives of quark and gluon distributions at $Q^2 \approx 30 \text{ GeV}^2$

Expansion very stable except for very small momenta $x \lesssim 10^{-4}$

Impact on precision of LHC predictions

• W^{\pm}, Z -boson rapidity distribution (scale variation $\frac{m_{W,Z}}{2} \le \mu \le 2m_{W,Z}$)

Anastasiou, Petriello, Melnikov '05

- NNLO QCD theoretical uncertainties (renormalization / factorization scale) at level of 1% Dissertori et al. '05
 - one of the few cross sections known to NNLO in pQCD
- Standard candle process for parton luminosity

Updates of PDFs (exp)

- New experimental data
 - results from neutrino-nucleon DIS for strange quark PDFs ($s \neq \bar{s}$)
- Uncertainty on \bar{u} , \bar{d} doubles from 1.5% to 3% at $Q^2 \simeq M_W^2$ MSTW '07

• s, \bar{s} feed into F_2 NC DIS constraint $4/9(u + \bar{u}) + 1/9(d + \bar{d} + s + \bar{s})$

Updates of PDFs (exp)

- New experimental data
 - results from neutrino-nucleon DIS for strange quark PDFs ($s \neq \bar{s}$)
- Uncertainty on $ar{u}$, $ar{d}$ doubles from 1.5% to 3% at $Q^2\simeq M_W^2$ MSTW '07
 - s, \bar{s} feed into F_2 NC DIS constraint $4/9(u + \bar{u}) + 1/9(d + \bar{d} + s + \bar{s})$

Updates of PDFs (th)

- Improved heavy quark (charm) threshold
 - matching consistent with QCD factorization CTEQ '08
- Significant changes due to larger light flavor PDFs

Cross sections at LHC

- Predictions for W^{\pm}/Z cross sections at LHC shift by 8% between PDF sets CTEQ6.6 and CTEQ6.1 (improved theory!)
 - sensitivity to PDFs in the $x \sim 10^{-3}$ range
- W^{\pm}/Z -ratio golden calibration measurement

Large extra dimensions

- Sensitivity of LHC dijet cross section to large extra dimensions Ferrag '04
 - large extra dimensions accelerate running of α_s as compactification scale M_c is approached
- PDF uncertainties
 - potential sensitivity to M_c reduced from 6 TeV to 2 TeV

 $M_c = 2$ TeV no PDF error

 $M_c = 2$ TeV with PDF error

Initial LHC run at 10 TeV

- Cross section estimates through ratio of parton luminosities Stirling at DIS 2008
 - less phase space for production of high mass objects at 10 TeV

- Cross section is reduced by $\mathcal{O}(50)\%$ for masses below $\sim 200 \text{ GeV}$ (dependent on process)
 - e.g. production of $t\bar{t}$ -pairs reduced by factor of $\mathcal{O}(2)$
- Stronger reduction for scales of $\mathcal{O}(2-3)$ TeV

Parton cross sections

How precise are the predictions?

- Isolation of new physics signal from background
 - look for deviations from the Standard Model (if possible data driven)
 - e.g. R-parity conserved SUSY with cascade decays into LSP multiple jets, leptons and missing E_T

Perturbative QCD

- NLO QCD corrections are essential NLO (important for rates)
 - large K-factors, new parton channels may dominate beyond tree level
 - e.g. $pp \to Z(\to \nu \bar{\nu}) + 4jets$ is $\mathcal{O}(\alpha_s^4)$ and $\Delta(\alpha_s^{LO}) \simeq 10\%$ gives $\Delta(\sigma^{LO}) \simeq 40\%$

SUSY searches

Typical selection cuts

- Njet ≥ 4
- $E_{T(1)} > 100 \text{GeV}$
- $E_{T(2,3,4)} > 50 \text{GeV}$

•
$$M_{\text{eff}} = \text{MET} + \sum_{i} E_{Ti}$$

Example: mSUGRA, point SU3

•
$$m_0 = 100 \text{ GeV}, m_{1/2} = 300 \text{ GeV},$$

tan $\beta = 6, A_0 = -300, \mu > 0$

- Discrimination of BSM signal from background requires precise predictions (exact LO matrix elements)
- SM background in high-end tail of missing E_T e.g. $pp \rightarrow Z(\rightarrow \nu \bar{\nu}) + 4jets$
- Significance of potential disagreement between data and MadGraph/Sherpa/Algen/... ?

LHC "priority" wishlist

process	background to	accomplished
$(V \in \{\gamma, W^{\pm}, Z\})$		
$pp \rightarrow VV + 1$ jet	$t\bar{t}H$, new physics	WW + 1 jet
$pp \rightarrow H + 2{ m jets}$	<i>H</i> production by vector boson fusion (VBF)	H+2jets
$pp ightarrow t ar{t} b ar{b}$	$tar{t}H$	
$pp \rightarrow t\bar{t} + 2{ m jets}$	$tar{t}H$	
$pp ightarrow VV b ar{b}$	$VBF \rightarrow VV, t\bar{t}H$, new physics	
$pp \rightarrow VV + 2{ m jets}$	$VBF \to VV$	
$pp \rightarrow V + 3$ jets	various new physics signatures	
$pp \rightarrow VVV$	SUSY trilepton	ZZZ, WWZ

Les Houches 2005 [hep-ph/0604120]

Original experimenter's wishlist

Tevatron Run II Monte Carlo workshop April 2001

Single boson	Diboson	Triboson	Heavy flavour	
$W + \leq 5j$	$WW + \leq 5j$	$WWW + \leq 3j$	$t\bar{t} + \leq 3j$	
$W + b\bar{b} + \leq 3j$	$WW + bb + \leq 3j$	$WWW + bb + \le 3j$	$t\bar{t} + \gamma + \leq 2j$	
$W + c\overline{c} + \leq 3j$	$WW + c\bar{c} + \leq 3j$	$WWW + \gamma\gamma + \leq 3j$	$t\bar{t} + W + \leq 2j$	
$Z + \leq 5j$	$ZZ + \leq 5j$	$Z\gamma\gamma + \leq 3j$	$t\bar{t} + Z + \le 2j$	
$Z + \frac{b\bar{b}}{b} + \le 3j$	$ZZ + b\overline{b} + \leq 3j$	$WZZ + \leq 3j$	$t\bar{t} + H + \le 2j$	
$Z + c\bar{c} + \le 3j$	$ZZ + c\bar{c} + \leq 3j$	$ZZZ + \leq 3j$	$t\bar{b} + \leq 2j$	
$\gamma + \leq 5j$	$\gamma\gamma + \leq 5j$		$b\bar{b} + \leq 3j$	
$\gamma + b\overline{b} + \leq 3j$	$\gamma\gamma + b\bar{b} + \leq 3j$			
$\gamma + c\bar{c} + \leq 3j$	$\gamma\gamma + c\bar{c} + \leq 3j$			
	$WZ + \leq 5j$			
	$WZ + b\overline{b} + \leq 3j$			
	$WZ + c\overline{c} + \leq 3j$			
	$W\gamma + \leq 3j$			
	$Z\gamma + \leq 3j$			

Run II Monte Carlo Workshop, April 2001

Why are one-loop corrections difficult ?

Outline of a generic NLO calculation

Real corrections - subtractions (IR-divergent) Virtual corrections + subtractions (IR-divergent)

Cancellation of singularities Finite partonic cross sections Phase space integration Convolution with PDFs Monte Carlo

- All conceptual issues solved ("just" technical work)
- However, no general libraries available
- Speed and stability are the important criteria in practice

LO

- Efficient techniques for computing tree amplitudes exist
 - recursion relations Berends, Giele '87

NLO

- Straightforward in principle hard in practice with known bottlenecks
 - one-loop virtual corrections (tensor integrals)

$$I^{\mu_1,\mu_2,\dots}(k_1,\dots) = \int d^D p_1 \frac{p_1^{\mu_1} p_2^{\mu_2} \dots}{(p_1^2 - m_1^2)((p_1 - k_1)^2 - m_2^2) \dots}$$

- Alternative methods for tensor reduction
 - improved Passarino-Veltman; multi-loop inspired techniques; sector decomposition + contour deformation; numerical approach to loop integration; ...
- New recursive on-shell approach makes use of well-known methods
 - colour ordering; helicity amplitudes; supersymmetry; unitarity; factorization of amplitudes
- Unitarity: fusing rules for amplitudes (sewing of tree level amplitudes) Bern, Dixon, Dunbar, Kosower '94; ...

Complete NLO results

• NLO cross sections for $2 \rightarrow 3$ processes (e.g. for hadron colliders)

 $pp \rightarrow 3$ jets, $\gamma\gamma$ +jet, V+2jets, $t\bar{t}H$, $b\bar{b}H$, $t\bar{b}H$, $b\bar{b}V$, HHH, H+2jets, VV+2jets (VBF)

Bern et al.; Kunszt et al.; Kilgore, Giele; Campbell et al.; Nagy; Del Duca et al.; Campbell, Ellis; Beenakker et al.; Dawson et al.; Dittmaier et al.; Peng et al.; Plehn, Rauch; Febres Cordero et al.; Jäger et al.; Ciccolini et al. '96-'07

- $pp \rightarrow t\bar{t} + jet$ at NLO Dittmaier, Uwer, Weinzierl '07 $pp \rightarrow WW + jet$ at NLO Dittmaier, Kallweit, Uwer '07; Campbell, Ellis, Zanderighi '07 $pp \rightarrow ZZZ$ at NLO Lazopoulos, Melnikov, Petriello '07 $pp \rightarrow WWZ$ at NLO Hankele, Zeppenfeld '07
- **2** \rightarrow 4 processes (current technical frontier)
 - QCD corrections to $\gamma\gamma
 ightarrow t \bar{t} b \bar{b}$ Guo, Ma, Han, Zhang, Jing '07

Case for NNLO

- Hadronic di-jets: large statistics even with high- p_T cuts
 - gluon jets constrain gluon PDF at medium/large x
 - searches for quark sub-structure (di-jet angular correlations)
- NNLO for di-jets important for scale uncertainty, PDF determination, modelling of jets, ...
 - Ycut Ycut Ycut
- Calculation of NNLO cross sections
 - cancellation of infrared divergencies highly non-trivial
 - (two-loop) virtual amplitudes
 Anastasiou, Bern, v.d.Bij, De Freitas, Dixon, Ghinculov, Glover, Oleari, Schmidt,
 Tejeda-Yeomans, Wong '01-'04 and Garland, Gehrmann, Glover, Koukoutsakis,
 Remiddi, '02; S.M., Uwer, Weinzierl '02
 - numerical phase space integration very difficult Anastasiou, Del Duca, Frixione, Gehrmann, Gehrmann-De Ridder, Glover, Grazzini, Heinrich, Kilgore, Melnikov, Petriello, Somogyi, Trócsányi, Weinzierl '03-'08
 - major milestone $e^+e^- \rightarrow 3$ jets complete Gehrmann, Gehrmann-De Ridder, Glover, Heinrich '07

Top-quark production

- LHC will accumulate very high statistics for $t\bar{t}$ -pairs
 - low luminosity run: $8 \cdot 10^6$ events/year (high luminosity run: 10 times more)
 - mass measurement $\Delta m_t = O(1) \text{GeV}$ constrains Standard Model Higgs mass M_H
 - top-quark spin correlations and searches for anomalous couplings
- Top-quarks make up large part of background for Higgs or new physics
 - Characteristic signatures (event reconstruction in many channels)
- Leading order Feynman diagrams

Total cross section (standard currency in theory)

- Theory predictions
 - plain vanilla NLO QCD

Nason, Dawson, Ellis '88; Beenakker, Smith, van Neerven '89; Mangano, Nason, Ridolfi '92; Bernreuther, Brandenburg, Si, Uwer '04; ...

Kinematical limits

- Small-mass limit $m^2 \ll s, t, u$
 - simple multiplicative relation between massive $\mathcal{M}^{(m)}$ and massless $\mathcal{M}^{(m=0)}$ amplitudes to all orders S.M., Mitov '06
 - full result for heavy-quark hadro-production at two loops in QCD in limit $m^2 \ll s, t, u$ S.M., Czakon, Mitov '07
- Threshold at $s \simeq 4m^2$
 - parton cross section exhibits Sudakov-type logarithms $\ln(\beta)$ with velocity of heavy quark $\beta = \sqrt{1 4m^2/s}$ at nth-order: $\alpha_s^n \ln^{2n}(\beta)$
 - NNLO corrections near threshold S.M., Uwer '08 (all powers of $\ln \beta$ and Coulomb corrections plus exact scale dependent $\ln(\mu/m)$ -terms)

LHC total cross section

- NLO (with CTEQ6.5 PDF set)
 - Scale uncertainty O(10%) ⊕ PDF uncertainty O(5%)
- NNLO_{approx} (with MRST2006 PDF set)
 - scale uncertainty $\mathcal{O}(3\%) \oplus \mathsf{PDF}$ uncertainty $\mathcal{O}(2\%)$

• Theory at NNLO matches anticipated experimental precision $\mathcal{O}(10\%)$

Invariant mass distribution

Differential distribution in top-quark pair invariant $M_{t\bar{t}}$

- Left: the $t\bar{t}$ invariant mass spectrum at LHC with NLO electroweak corrections
- Right: s-channel graviton exchange in $t\bar{t}$ invariant mass spectrum at LHC Frederix, Maltoni '07
 - Kaluza-Klein resonances in an extra dimensions model

$t\bar{t}+$ jet production

- Impressive state-of-the-art NLO QCD calculation Dittmaier, Uwer, Weinzierl '07
- Much improved scale dependence
- Differential distributions underway (will test parton shower predictions)

Single top-quark production

- Single-top production allows study of charged-current weak interaction of top quark
 - direct extraction of the CKM-matrix element V_{tb}
 - flagship measurement of Tevatron run II (control QCD bckgrd !)

- Large corrections from extensions of Standard Model
 - *t*-channel: anomalous couplings or flavor changing neutral currents
 - s-channel: charged "top-pion", Kaluza-Klein modes of W or W'-boson

Higgs production at LHC

- Standard model Higgs
 - branching ratios for decay (left) and dominant production modes (right)
 Djouadi '05

Gluon fusion

• Largest rate for all values of Higgs mass M_H (top-Yukawa coupling)

heavy top limit $m_t \rightarrow \infty$: effective gg Higgs vertex

- Total cross section with QCD corrections
- Variation of renormalization scale for Higgs mass $M_H = 120 \text{GeV}$
 - NNLO corrections
 Harlander, Kilgore '02; Anastasiou, Melnikov '02;
 Ravindran, Smith, van Neerven '03
 - complete soft N³LO corrections
 S.M., Vogt '05

Differential distributions in gluon fusion

- Bin-integrated Higgs rapidity distribution including decay $H \rightarrow \gamma \gamma$
 - QCD corrections up to NNLO Anastasiou, Melnikov, Petriello '05
 - fast parton level Monte Carlo HNNLO Catani, Grazzini '07

- Impact of kinematical cuts on higher order corrections
 - left: Higgs mass $M_h = 125$ GeV, no cuts on p_t of jets
 - right: Higgs mass $M_h = 165$ GeV and veto on jets with $p_t > 40$ GeV (k_t algorithm for jet reconstruction with jet size D = 0.4)

Weak vector-boson fusion

- Channel $qq \rightarrow qqH$ (with cuts on jets energies)
- Second largest rate (WWH coupling)
 - mostly dominated by u, d-quarks

Higgs-strahlung

- Channel $q\bar{q} \rightarrow W(Z)H$
- Third largest rate (same couplings as vector boson fusion)

$t\bar{t}$

- Channel $pp \to t\bar{t}H$
 - discovery channel in low mass region $M_H \lesssim 130 \text{ GeV}$
 - driven by gluon luminosity, but large SM background $pp \rightarrow t\bar{t}H \rightarrow t\bar{t}b\bar{b}$

- Main backgrounds for $pp \rightarrow t\bar{t}H$
 - combinatorial background from signal (4 b-quarks in final state)
 - $t\bar{t}+2$ jets, $t\bar{t}b\bar{b}, t\bar{t}Z$
 - complex final states
- New: NLO QCD corrections to $q\bar{q} \rightarrow t\bar{t}b\bar{b}$ Denner, Dittmaier, Pozzorini '08
 - extremely diffcult hexagon integrals with masses

Progress in theory

- Sensitivity for Higgs production at LHC
 - inclusion of higher order theory predictions in new studies
 - e.g. $pp \rightarrow t\bar{t}H$ absent in CMS plot

Summary

Hard QCD

- Parton luminosity at hadron colliders
- Hard parton cross section
 - W^{\pm}/Z -boson production
 - jet cross sections
 - hadro-production of top quarks
 - Higgs total cross section
- Hadronic final state
 - jet algorithms and fragmentation of (heavy) quarks
 - parton shower Monte Carlo simulation

Outlook

- QCD tool box ready for LHC challenges
 - however, still much dedicated work to do

Sven-Olaf Moch