Exploring the Quark-Gluon Plasma with ALICE at the LHC

Physics background:

at high temperature and/or high density two phase transitions

* confined matter \Leftrightarrow deconfined matter

* broken chiral symmetry \Leftrightarrow restored chiral symmetry

want to find and characterize this new state of matter

J. Stachel – Physikalisches Institut der Universität Heidelberg 'Physics at the Terascale' - 46th Wilhelm und Else Heraeus Seminar Bad Honnef, April 29, 2008

phase transition between hadrons and deconfined quark gluon matter in Lattice QCD

SPS: 1986 - 2003

- S and Pb ; up to $\sqrt{s} = 20$ GeV/nucl pair
- hadrons, photons and dileptons

LHC : starting 2008

- Pb ; up to $\sqrt{s} = 5.5$ TeV/nucl pair
- ALICE and CMS experiments

AGS : 1986 - 2000

- Si and Au ; up to $\sqrt{s} = 5$ GeV /nucl pair
- only hadronic variables

RHIC: 2000

- Au ; up to $\sqrt{s} = 200 \text{ GeV}$ /nucl pair
- hadrons, photons, dileptons, jets

CERN Press Release February 2000:

New State of Matter created at CERN

At a special seminar on 10 February, spokespersons from the experiments on CERN* 's Heavy Ion programme presented compelling evidence for the existence of a new state of matter in which quarks, instead of being bound up into more complex particles such as protons and neutrons, are liberated to roam freely.

BNL press release April 2005: RHIC Scientists Serve Up "Perfect " Liquid New state of matter more remarkable than predicted – raising many new questions

results of first 3 years summarized in 4 large papers:

Nuclear Physics A757 (2005) nucl-ex/0410003 (PHENIX) nucl-ex/0410020 (BRAHMS) nucl-ex/0410022 (PHOBOS) nucl-ex/0501009 (STAR) and references therein

> in central AuAu collisions at RHIC $\sqrt{s} = 38$ TeV about 7500 hadrons produced (BRAHMS)

about three times as many as at CERN SPS

Johanna Stachel

from transverse energy rapidity density using Bjorken formula*: $\epsilon \equiv dE_t/d\eta / _0 \pi R^2$) using Jacobian $d\eta/dz=1/\tau_0$ SPS 158 A GeV/c Au-Au collisions: $dE_t/d\eta = 0$ GeV $\tau_0 = 1 \text{ fm/c} \rightarrow \epsilon_0 = 3 \text{ GeV/fm}^3$ PHENIX & STAR central Au-Au collisions: $dE_t/d\eta = 0$ GeV (nucl-ex/0407003 and nucl-ex/0409015) conservatively: $\tau_0 = 1 \text{ fm/c} \rightarrow \epsilon_0 = 5.5 \text{ GeV/fm}^3$ optimistically: $_0 = 0.14 \text{ fm/c} \rightarrow \epsilon_0 = 40 \text{ GeV/fm}^3$

in any case this is significantly above critical energy density from lattice QCD of 0.7 GeV/fm³

* this is lower bound; if during expansion work is done (pdV) initial energy density higher (indications hydrodynamics: factor 3)

expected initial conditions in central nuclear collisions at LHC

initial conditions from pQCD+saturation of produced gluons

$$N_{AA}(\mathbf{0}, p_0, \Delta y = 1, \sqrt{s}) \cdot \pi/p_0^2 = \pi R_A^2$$

using pQCD cross sections find for central PbPb at LHC $p_0 = p_{sat} = 2 \text{ GeV}$ and a formation time of $\tau_0 = 1/p_{sat} = 0.1 \text{ fm/c}$ and with Bjorken formula:

 $\varepsilon_{0} = dE_{t}/d\eta / (\eta R^{2})$ w. Jacobian $d\eta/dz = 1/\tau_{0}$

as compared to RHIC: more than order of magnitude increase in intial energy density

```
initial temperature T_0 \approx 1 TeV (factor 2-3 above RHIC)
```


expected evolution of QGP fireball at LHC

after fast thermalization hydrodynamic expansion of fireball and cooling T \propto -3 hadronization starts at when T_c is reached (165 MeV) duration hadronization: # degrees of freedom drops by factor 3.5

-> volume has to grow accordingly -> 3-4 fm/c

initial N_{AA} determines final multiplicity estimate (Eskola) $dN_{ch}/d\eta = 2600$ overall several 10 k hadrons produced 'macroscopic state'

task of heavy ion program at LHC • unambiguous proof of QGP - determine properties of this new state of matter be open for the unexpected

the challenge: identification and reconstruction of 5000 (up to 15000) tracks of charged particles

- ALICE is dedicated experiment to study all aspects of heavy ion collisions at LHC
- detector is coming together after more than 10 years of hard work and many novel developments

1. The hadro-chemical composition of the fireball

what are the 7500 hadrons observed in final state at RHIC?

analysis of yields of produced hadronic species in statistical model – grand canonical

partition function: $\ln Z_i = \frac{Vg_i}{2\pi^2} \int_0^\infty \pm p^2 dp \ln(1 \pm \exp(-(E_i - \mu_i)/T))$

particle densities: $n_i = N/V = -\frac{T}{V} \frac{\partial \ln Z_i}{\partial \mu} = \frac{g_i}{2\pi^2} \int_0^\infty \frac{p^2 \, \mathrm{d}p}{\exp((E_i - \mu_i)/T) \pm 1}$

for every conserved quantum number there is a chemical potential:

$$\mu_i = \mu_B B_i + \mu_S S_i + \mu_{I_3} I_i^3$$

but can use conservation laws to constrain V, μ_S, μ_{I_3}

Fit at each energy provides values for T and µ_b

 from AGS energy upwards all hadron yields in central collisions of heavy nuclei reflect grand canonical equilibration
 strangeness suppression known from pp and e+e- is lifted

for a review: Braun-Munzinger, Stachel, Redlich, QGP3, R. Hwa, ed. (Singapore 2004) nucl-th/0304013

Johanna Stachel

hadron yields at RHIC compared to statistical model

130 GeV data in excellent agreement with thermal model predictions

prel. 200 GeV data fully in line still some experimental discrepancies

chemical freeze-out at: $T = 165 \pm 5 \text{ MeV}$

P. Braun-Munzinger, D. Magestro, K. Redlich, J. Stachel, Phys. Lett. B518 (2001) 41A. Andronic, P. Braun-Munzinger, K. Redlich, J. Stachel, Nucl. Phys. A772 (2006) 167

hadrochemical freeze-out points and the phase diagram

A. Andronic, P. Braun-Munzinger, J. Stachel, Nucl. Phys. A772 (2006) 167

interesting question: what about strongly decaying resonances – sensitive to existence of hadronic fireball after hadronization of QGP

2. Indications for hydrodynamic expansion

consider particle transverse momentum spectra azimuthal correlations momentum correlations

QGP signature: hydrodynamic expansion - transverse spectra

slope constants grow with mass - much too large to be temperatures! Hubble Expansion of Nuclear Fireball expansion velocity at surface 2/3 c at SPS, 4/5 c at RHIC

Azimuthal Anisotropy of Transverse Spectra

$$\frac{dN}{dp_t dy d\phi} = N_0 \cdot \left[1 + \sum_{i=1}^{\infty} 2v_i (y, p_t) \cos(i\phi) \right]$$

1 X T

"elliptic flow" effect of expansion (positive v_2) seen from top AGS energy upwards RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

elliptic flow for different particle species and p_t at RHIC

ideal (nonviscous hydrodynamics describes spectra and azimuthal asymmetries up to about 2 GeV/c at sub% level requires strong interactions at short times -> very fast equilibration (< 1 fm/c) at present mechanism how this happens not yet established!

Johanna Stachel

RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

low viscosity (maybe zero?) implies strong interactions not ideal gas conjecture: QGP produced at RHIC is strongly interacting

elliptic flow at LHC: most models predict stronger effects – sensitivity to initial and final condition and to EOS

T. Hirano et al., J.Phys.G34 (2007)S879

how well will elliptic flow be measured in ALICE at LHC?

3. Signature for deconfinement

charmonia as QGP signature

* T. Matsui and H. Satz (PLB178 (1986) 416) predict J/ψ suppression in QGP due to Debye screening

★ significant suppression seen in central PbPb at top SPS energy (NA50) in line with QGP expectations

J.P. Blaizot, P.M. Dinh, J.Y. Ollitrault, Phys.Rev.Lett.85(2000)4012 Dissolution in QGP at critical density n_c (dashes) and with energy density fluctuations (solid)

 $n_c = 3.7 / \text{fm}^2$

 $n_{c1}=3.3$ and $n_{c2}=4.2/\text{fm}^2$

• but: at hadronization of QGP J/ ψ can form again from deconfined quarks, in particular if number of cc pairs is large; $N_{J/\psi} \propto N_{cc}^{2}$ (P. Braun-Munzinger and J.Stachel, PLB490 (2000) 196)

what happens at higher beam energy when more and more charm-anticharm quark pairs are produced?

low energy: few c-quarks per collision \rightarrow suppression of J/ ψ high energy: many" \rightarrow enhancementunambiguous signature for QGP!

quarkonium production through statistical hadronization

assume: all charm quarks are produced in initial hard scattering; number not changed in QGP
 hadronization at T_c following grand canonical statistical model used for hadrons with light valence quarks (fugacity g_c to fix number of charm quarks)

 $\begin{aligned} \text{valence quarks (fugacity } g_{c} \text{ to fix number of charm quarks)} \\ N_{c\bar{c}}^{direct} &= \frac{1}{2} g_{c} V(\sum_{i} n_{D_{i}}^{therm} + n_{\Lambda_{i}}^{therm}) + g_{c}^{2} V(\sum_{i} n_{\psi_{i}}^{therm}) + \dots \\ \text{and for} \quad N_{c,\bar{c}} << 1 \rightarrow \quad \text{canonical:} \quad N_{c\bar{c}}^{dir} &= \frac{1}{2} g_{c} N_{oc}^{therm} \frac{I_{1}(g_{c} N_{oc}^{therm})}{I_{0}(g_{c} N_{oc}^{therm})} \\ \text{obtain:} \quad N_{D} = N_{D}^{therm} \cdot g_{c} \cdot \frac{I_{1}}{I_{0}} \quad \text{and} \quad N_{J/\psi} = N_{J/\psi}^{therm} \cdot g_{c}^{2} \quad \text{and all other charmed} \\ \text{hadrons} \end{aligned}$ $\begin{aligned} \text{additional input parameters:} \quad V, N_{c\bar{c}}^{dir}(pQCD) \end{aligned}$

P. Braun-Munzinger, J. Stachel, Phys. Lett. B490 (2000) 196 and Nucl. Phys. A690 (2001) 119
A. Andronic, P. Braun-Munzinger, K. Redlich, J. Stachel, Nucl. Phys. A715 (2003) 529c,
Phys. Lett. B571 (2003) 36, Nucl. Phys. A789 (2007) 334 and Phys. Lett. B652 (2007) 259
M. Gorenstein et al., hep-ph/0202173; A. Kostyuk et al., Phys. Lett. B531 (2001) 225; R. Rapp and
L. Grandchamp, hep-ph/0305143 and 0306077

Johanna Stachel

comparison of model predictions to RHIC data: centrality dependence and rapidity distribution

P. Braun-Munzinger, K. Redlich, J. Stachel, Nucl. Phys. A789 (2007) 334 nucl-th/0611023

 good agreement, no free parameters
 but need for good open charm

 (this is a lesson for LHC as well!)

but there is a more revealing normalization:

energy dependence of quarkonium production in statistical hadronization model

A. Andronic, P. Braun-Munzinger, K. Redlich, J. Stachel Phys. Lett. B652 (2007) 259

centrality dependence and enhancement beyond pp value will be fingerprint of statistical hadronization at LHC -> direct signal for deconfinement

predictions for charmonium rapidity and centrality distributions at LHC

yellow band: uncertainty of pQCD prediction for ccbar prod. line: central value

charmonia in ALICE at mid-rapidity

flow of quarkonia at LHC?

there is evidence from RHIC that fireball is expanding hydrodynamically do heavy quarks follow?

p_t spectra with flow are very different for charmonia from those measured in pp_bar e.g. at Fermilab or expected for pp at LHC

should be easy to discriminate at LHC

bottomonium at LHC

in terms of number of produced quarks, beauty at LHC like charm at RHIC do they thermalize and hadronize statistically?? if yes, population of 2s and 3s states completely negligible (exp- Δ m/T) hydrodynamic flow? need to measure spectrum to 15 GeV

open/hidden heavy flavor measurements in ALICE

- * Hadronic decays: $D^0 \rightarrow K\pi$, $D^+ \rightarrow K\pi\pi$, $D_s \rightarrow KK^*$, $D_s \rightarrow \phi\pi$, ...
- ★ Leptonic decays:
 - $B \rightarrow l (e \text{ or } \mu) + anything$
 - Invariant mass analysis of lepton pairs: BB, DD, BD_{same} , J/Ψ , Ψ' , Υ family, $B \rightarrow J/\Psi$ + anything
 - BB $\rightarrow \mu \mu \mu (J/\Psi \mu)$

4. high p, partons as probe of the medium, i.e. the QGP

prediction: in dense partonic matter a jet is losing energy rapidly order several GeV/fm

RHIC result: jet quenching

jet quenching indicative of high gluon rapidity density

I. Vitev, JPG 30 (2004) \$791		$ au_0[fm]$	T[MeV]	ε [GeV/fm ³]	$ au_{tot}[fm]$	dN^g / dy
	SPS	0.8	210-240	1.5-2.5	1.4-2	200-350
	RHIC	0.6	380-400	14-20	6-7	800-1200
	LHC	0.2	710-850	190-400	18-23	2000-3500

•Consistent estimate with hydrodynamic analysis

several mechanisms describe jet
quenching at RHIC -> predictions
for LHC span very wide range
R_{AA} stays at 0.2 out to 100 GeV or so
R_{AA} rises slowly toward high pt
R_{AA} much smaller than at RHIC
need to cover large p_t range
go beyond leading particle analysis
identified jets, frag. function, ...

jet measurements in ALICE

2 GeV	20 GeV	7	100 GeV	200 GeV		
Mini-Jets 100/event 1/event		1 Hz	100k/month			
at p > 2 GeV/c :			at hig	h p:		
- leading particle analysis			- reconstructed jets			
- correlation studies			- event-by-event well distinguishable objects			ble objects
(similar to RHIC)						

Example : 100 GeV jet + underlying event

for jet physics recently added EmCal will play important role in conjunction with existing charged particle tracking

Johanna Stachel

measurement of jet fragmentation function

sensitive to energy loss mechanism

response of the medium to jet energy loss

possibility: sonic shock waves – supersonic (v>c_s) partons produce shock waves propagating at a Mach angle w.r.t. the parton direction: cos(D)- c_s

sound velocity is related to the EOS of the medium: $c_s^2 = \partial p/\partial \epsilon$ ideal gas has c_s^2

original idea: Stöcker/Greiner 1976 for nuclear reactions Stöcker 2004: 60° cone for jets in QGP and simultaneously –J.Casalderrey-Solana,E. Shuryak, D. Teaney,hep-ph/0411315

the TPC (Time Projection Chamber) - 3D reconstruction of up to 15 000 tracks of charged particles per event

with 95 m³ the largest TPC ever

560 million read-out pixels!

precision better than 500 µm in all 3 dim. 180 space and charge points per track

Johanna Stachel

the TRD (Transition Radiation Detector) identifies electrons at the trigger level

540 chambers (radiator + drift+ multiwire proportional chamber + read-out with segmented cathode pad plane, operated with Xenon) typical chamber size 1.7 m² over all detector area 750 m² in 18 supermodules (8m long) 1.16 million read-out channels 30 million pixels

INES WITH SALES

read-out electronics: 2 custom ASICS on multichip modules developed at PI and KIP in Heidelberg

from charge-clustern zu track segments 500 cpu Local Tracking Unit on each chamber:

275 000 CPU's process raw data of
65 Mbyte to reconstruct tracks (of 6 segments) in 6.5 μs for trigger decision:
high momentum electron pair

Combined Momentum Resolution in ALICE Central Barrel

resolution ~ 3% at 100 GeV/c excellent performance in hard region!

Johanna Stachel

RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

Backup slides

rapid hadrochemical equilibration at phase boundary

Lattice QCD calcs. F. Karsch et al.

Known since years: two-body collisions are not sufficient to bring multi-strange baryons into equilibrium.
The density of particles varies rapidly with T near the phase transition.

• Multi-particle collisions are strongly enhanced at high density and lead to chem. equilibrium very near to $T_{c.}$

P. Braun-Munzinger,J. Stachel, C. WetterichPhys. Lett. B596 (2004) 61nucl-th/0311005

chemical freeze-out takes place at T_c

rate of change of density due to multiparticle collisions ∝n(T)ⁿ_{in} |M |² Φ
example: for small μ_b, reactions such as KKKππ→ΩN_{bar} bring multi-strange baryons close to equilibrium.
Equilibration time τ ∝ T⁻⁶⁰ !
All particles freeze out within a very

narrow temperature window close to T_c.

P. Braun-Munzinger,J. Stachel, C. WetterichPhys. Lett. B596 (2004) 61nucl-th/0311005

High p_T Spectra in p-p Collisions (II)

NLO pQCD with apropriate FF describes well a wide range of p-p spectra.

Any cross section modification in nuclear collisions is defined w.r.t. the corresponding p-p cross section by the nuclear modification factor R_{AB} ...

Quantitative Constraints on Medium Parameters

- Least square fit of energy loss model parameters to data
- Medium properties indicative of extremely hot, dense, strongly interacting QCD matter
- However, R_{AA} not very sensitive to variations of medium properties constrained within $\pm 20-25\%$ at 1σ level • $\frac{PQM}{\hat{q} = 13.2^{+2.1}_{-3.2} \text{GeV}^2/\text{fm}} \frac{\text{GLV}}{dN^g} \frac{WHDG}{dN^g} \frac{ZOWW}{dN^g} re$

heavy quark distributions from inclusive electron spectra

surprize: suppression very similar to pions

prediction (Dokshitzer, Kharzeev) less energy loss for heavy quarks (radiation suppr.)

Johanna Stachel

RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

radiation fails, is scattering the solution for heavy quarks?

recently shown by Korinna Zapp (U. Heidelberg) that scattering also important for parton energy loss; implementation in nonperturbative approach - SCI jet quenching model (K. Zapp, G. Ingelman, J. Rathsman, J. Stachel, PLB637 (2006) 179

$D^0 \rightarrow K\pi$ channel

ALICE PPR vol2 JPG 32 (2006) 1295

- high precision vertexing,
 better than 100 μm (ITS)
- high precision tracking (ITS+TPC)
- K and/or π identification (TOF)

high precision charm measurement

open beauty from single electrons

jet quenching for b-quarks relative to c-quarks

