Detector Concepts at the ILC

Ties Behnke, DESY

Experimentation at the ILC

Detector Concepts

Outlook

Physics at the Terascale Seminar, Bad Honneff, 27.4.2008-30.4.2008

Physics Agenda

Explore the physics at the scale of electroweak symmetry breaking

- Higgs Physics
- Standard Model Physics at "Terascale"

Physics beyond the Standard Model

- Search for new physics
- Explore the Terascale

Follow up on any discoveries the LHC might have made

Events at the ILC

• Point like particle collide, few particle per event, clean topologies, ...

Much simpler events than LHC, can focus much more on detailed event properties

Physics at the ILC

Stress Precision measurements

Reconstruct complete event properties Do a "full" job: hermeticity

Be prepared for the unexpected

Dead time free readout large acceptance "no optimization": very broad program

Higgs recoil spectrum

"Fully" explore the physics at the Terascale, establish the models and mechanisms

Coupling-Mass Relation

ACFA LC Study

The "ultimate" in precision requirements:

Measurement of the Higgs Self Coupling

- Multi Jets in the final state
- need excellent jet-energy resolution to get decent measurement

"Fully" explore the physics at the Terascale, establish the models and mechanisms

The States

Events at the ILC:

tt event at the ILC (LDC model)

- multi jet final states
- Ieptons, often in jets
- forward going physics

Jet energy reconstruction plays a central role at the ILC

C: V. Morgunov, A. Raspereza

8

The Backgrounds

Physics and the beam itself are the main background

Most challenges from beamstrahlung

- Vertex detector occupancy
- Very forward direction

Number of background induced hits in VTX vs. radius

T. Behnke: ILC Detector Concepts

The Past: Lessons learned

- Last generation of e+e- detectors: LEP detectors/ SLD
- Lots of know-how/ experience in building LHC detectors
- Be prepared for the unexpected (lifetime measurements, ultimate precision)

Detector Requirements

Excellent vertexing as close as possible to the IP

Robust, three dimensional tracking high efficiency, do not forget the low energy tracks

Powerful calorimeter good photon identification

hermeticity

Detector Requirements

Event Reconstruction

Excellent jet reconstruction needed

Individual particles particle identification "calculation" of total jet energy/ mass

Particle flow

Individual jets hardware compensation "measurement" of total jet energy

"compensating" Calorimetry

Particle Flow

Type E/E_{tot} RMS EM 26.55 19.33 Most precise event reconstruction 3.299 6.632 Neutral (measured e.g. in the jet mass) Individual particles are reconstructed: EN Charged charged and neutrals Hadrons Fundamental problem: fluctuations in the calorimeter: **<70%>** use tracker as much as possible replace information in calorimeter by tracker information only use calorimeter for neutral particles (photons, neutral hadrons) Pushes requirements for calorimeter: 30%/JE (below 100 GeV) excellent segmentation is the goal

energy resolution is of lesser importance

What is Particle Flow

What is Particle Flow

Perfect PFA : What theory predicts

Factors Contributing to Jet mass resolution

$$e^+ e^- \rightarrow Z^0 \rightarrow q \,\overline{q}$$
 at 91.2GeV Studies by
P. Krstonosic

Effect	σ [GeV]	σ [GeV]	σ [GeV]	σ
	separate	not joined	total (%/ \sqrt{E})	to total
$E_{v} > 0$	0.84	0.84	0.84 (8.80%)	12.28
$Cone < 5^{\circ}$	0.73	1.11	1.11(11.65%)	9.28
$P_t < 0.36$	1.36	1.76	1.76(18.40%)	32.20
$\sigma_{_{HCAL}}$	1.40	1.40	2.25(23.53%)	34.12
$\sigma_{_{ECAL}}$	0.57	1.51	2.32(24.27%)	5.66
M _{neutral}	0.53	1.60	2.38(24.90%)	4.89
M _{charged}	0.30	1.63	2.40(25.10%)	1.57

HCAL becomes very important for ultimate precision

Detector Requirements

Excellent vertexing as close as possible to the IP

Robust, three dimensional tracking high efficiency, do not forget the low energy tracks

Powerful calorimeter good photon identification

hermeticity

Tracking Layout

Proposed layout

Powerful tracking / vertexing system

excellent vertexing capability high precision tracking

Tracking Layout

Powerful tracking / vertexing system

Vertexing/ Tracking

Vertexing: excellent vertexing capabilities, thin!

Key issuses:

- measure impact parameter for each track
- space point resolution < 5 μm
- smallest possible inner radius $r_i \approx 15 \text{ mm}$
- transparency: ≈ 0.1% X₀ per layer
 - = 100 μ m of silicon for 5 layers
- stand alone tracking capability
- full coverage |cos Θ| < 0.98
- $\hfill \ensuremath{\,^{\circ}}$ modest power consumption < 100 W

Momentum resolution goal:

 $\frac{\delta p}{p} = 5 \times 10^{-5}$

ACFA LC Study

Vertexing

Pixel detector:

Many different technologies under discussion Resolution – dead area – material – speed

5 pixel layers, as small inner radius as possible, low material

Low mass structure readout speed

Tracker Benchmarks

C Dete

Be aware of single benchmarks have to look at the complete system! Higgs recoil mass measurement:

clear case for excellent momentum resolution

But be aware: proper choice of CMS Energy may have strong effect

Material in the Tracker

All SI tracker TPC based tracker:

Goal: very light tracking system:

total material before calorimeter < 3% XO in the barrel <15% in the endcap

including all services, all support structures, cables, etc.

Realistic (but optimistic) estimates make this believable...

in the barrel

Materials: from Concept to Reality

Major difference / advance to LHC detectors is needed:

27

The ideal PFLOW calorimeter

- Extremely dense (small Moliere Radius)
- Extremely granular (particle separation)

Traditional energy resolution is important

but not so critically

Fine grained deep HCAI	containment
	Granularity and longitudinal sampling
Transition region	As deep as possible
Fine grained ECAL	Granularity: "tracking"

PFLOW ECAL

Typical granularity for ECAL: 0.5cmx0.5cm to 1cmx1cm, SI detectors, Tungsten absorbers See lecture by A. Frey

CALICE prototype

Extreme direction: MAPS sensors in the ECAL

" r ConceptsVery detailed shower images 29 er

PFLOW HCAL

HCAL plays crucial role in a particle flow calorimeter

Simulation of hadronic shower is problematic

Typical cell sizes 3x3 cm² with analogue readout

Digital option investigated (smaller cells, 1bit readout)

See lecture

by A. Frey

Major effort (CALICE) to protoype such a calorimeter for the ILC

ILC Detector Concepts

30

Non-PFLOW: DREAM

Dual readout calorimeter (DREAM):

- Scintillator and Cerenkov fibers
- Sensitivities to EM and had part are different

Measure individually the EM and the EM+HAD component of a shower

Good energy resolution possible compensation by software "easy" segmentation is difficult, in particular in depth

Particle Flow in Simulation

Simulation of an event

Resolution close to 30%/JE for jets below 100 GeV

0.8

cos0

Particle flow gives ~2x better performance than traditional approach (<100 GeV jets)

Software is an important part of the detector optimization and development

T. Behnke: ILC Detector Concepts

Putting it together

ZHH->qqbbbb event at 500 GeV

Powerful vertex/ tracking/ calorimeter

put all this into a strong B field

incidentially have some muon ID on the outside

I have not talked about the forward region etc.. sorry

 $-H \rightarrow$ qqbbbb

T. Behnke: ILC Detector Concepts

Detector Optimization: ECAL Brient 2004 Thomson 2007

Photon separation (fraction of second photon within given distance)

1x1 cm² cell sizes seem reasonable

not a huge gain by smaller cells seen at the moment

Detector Optimization: HCAL ^{A. Raspereza,} V. Morgunov, Snowmass 2005

HCAL optimization: reconstruction of overlapping hadronic showers

Detector Optimization: HCAL M. Thomson, Paris 2007

<u>"Preliminary Conclusions"</u>

- 3x3 cm² cell size ok
- No advantage -> 1x1 cm²
 - physics ?
 - algorithm artefact ?
- 5x5 cm² degrades PFA

Detector Concepts at the ILC

Develop an integrated design of a possible detector at the ILC;

- Research into technologies: R&D collaborations
- Combine things into one detector: Concept Groups

Detector Concepts at the ILC

Develop an integrated design of a possible detector at the ILC;

- Research into technologies: R&D collaborations
- Combine things into one detector: Concept Groups

ILD

SiD

A Comparison

	SiD	ILD	4th
Vertex	Si-pixel	Si-pixel	Si-pixel
Tracker	Silicon strip	TPC	TPC or drift
ECAL	Si-W	Si-W	DREAM
HCAL	RPC digital	Fe-Scint	open
Field	5T	3.5-4T	4T
Event Reco	PFLOW	PFLOW	Compensating
main base	US	Europe/ Asia	US/Europe
# of subscribers	38	174	ca 20

Experiments at the ILC

One collider, one beam, two experiments:

- Two beam lines, switching beam from experiment to experiment
- One beam line, switching experiments from in-beam to standby

Push-Pull configuration favored because of cost considerations

Can this be done? How quickly? Loss of efficiency? Alignment?

Highly non trivial

Detector Roadmap

The roadmap for detectors at the ILC;

R&D at the ILC - NOW

Organized in two complementary ways:

Technology R&D collaborations

Look primarily at technologies concentrate on sub-detectors

Detector Concept groups

vertical

30-4-2008

Look at the overall concept optimize the interfaces between sub-detectors Look at integration issues

T. Behnke: ILC Detector Concepts

SiD, ILD, 4th

R&D at the ILC - NOW

The Next Years

Lots of detector R&D remains to be done:

see lecture by A. Frey after this.

Many great opportunities for interesting work and novel technological developments:

e.g. SiPM, SI readout for TPC, Timepix, new pixel detectors, low mass mechanics, etc etc etc

Have to face the challenge of preparing a coherent design without cutting technological developments off at the wrong moment

Conclusion and Outlook

The ILC physics program remains as interesting as ever

The ILC faces many interesting technological challenges:

great progress has been made over the last few years to meet them much progress still needs to be done before we can built these detectors

Concept groups ("Proto"-Collaborations) are forming to design and push specific detector concepts in a friendly but competitive environment

The ILC remains an exciting project, even after the recent political problems. Experimentation at the ILC is as challenging as experimentation at the LHC!