

Neutralino Mass Measurement in Dilepton Final States

<u>Niklas Mohr,</u> Albert Bursche, Klaus Roth, Katja Klein, Lutz Feld

bmb+f - Förderschwerpunkt

Großgeräte der physikalischen Grundlagenforschung Physics at the Terascale 29.04.2008

- Dilepton edges in SUSY
 - Chosen benchmark points
 - Different decay modes of the neutralinos
- Standard model backgrounds
 - Event selection
- Fit of the mass edge
 - Fit method
 - Calibration of the estimator
- Expected results for I fb⁻¹
 - Including statistical and systematical uncertainty

- SUSY solves many problems of the SM
 - Unification of the 3 forces
 - Dark matter candidate
- Symmetry between fermions and bosons
- Each standard model particle gets its superpartner
 - Spin differs by 1/2
- Up to now: no sparticles found
 - Symmetry is broken
- Mass eigenstates are measured
- R-Parity (Matter-Parity)
 - $P_R = +1$ SM particle
 - $P_R = -I$ SUSY particle

$$P_R = (-1)^{3 \cdot (B-L) + 2s}$$

SM par	ticle	spin	MSSM partner		spin
quark	q	$\frac{1}{2}$	squark	ilde q	0
lepton	l	$\frac{1}{2}$	slepton	\tilde{l}	0
gluon	g	1	gluino	${\widetilde g}$	$\frac{1}{2}$
W bosons	$W^{\pm}, \ W^0$	1	winos	$\tilde{W}^{\pm}, \; \tilde{W}^0$	$\frac{1}{2}$
B boson	B^0	1	bino	$ ilde{B}^0$	$\frac{1}{2}$
Higgs boson	H	0	higgsinos	\tilde{H}	$\frac{1}{2}$
graviton	G	2	gravitino	\tilde{G}	$\frac{3}{2}$

Particle	spin	P_R	gauge eigenstates	mass eigenstates
Higgs bosons	0	+1	$H_1^0, H_2^0, H_1^+, H_2^-$	h^0, A^0, H^0, H^{\pm}
squarks	0	-1	\widetilde{q}	\widetilde{q}
sleptons	0	-1	\tilde{l}	\widetilde{l}
neutralinos	$\frac{1}{2}$	-1	$\tilde{B}^{0}, \; \tilde{W}^{0}, \; \tilde{H}^{0}_{1}, \; \tilde{H}^{0}_{2}$	$ ilde{\chi}^{0}_{1}, \; ilde{\chi}^{0}_{2}, \; ilde{\chi}^{0}_{3}, \; ilde{\chi}^{0}_{4}$
charginos	$\frac{1}{2}$	-1	$\tilde{W}^{\pm}, \ \tilde{H}_1^-, \ \tilde{H}_2^+$	$\tilde{\chi}_1^{\pm}, \; \tilde{\chi}_2^{\pm}$
gluino	$\frac{1}{2}$	-1	$ ilde{g}$	$ ilde{g}$
gravitino	$\frac{3}{2}$	-1	$ ilde{G}$	$ ilde{G}$

Disadvantage: 105 new parameters (MSSM)

- Unification of masses and couplings at the GUT scale
- Symmetry-breaking via gravity
- R-Parity conservation $P_R = (-1)^{3 \cdot (B-L) + 2s}$
 - Supersymmetric particles are produced in pairs
 - LSP is stable
 - Sparticles decay into the LSP
- Only 5 free parameters:
 - M₀: common scalar mass
 - M_{1/2}: common gaugino mass
 - $tan(\beta)$: ratio of the Higgs vacuum expectation values
 - A₀: trilinear coupling
 - $sgn(\mu)$: sign of the higgsino mass parameter

Masses are calculated via running of the renormalization group equations

CMS Benchmark points

Aim: Determination of $m_{\tilde{\chi}^0_2} - m_{\tilde{\chi}^0_1}$ in mSUGRA

m ₀	m1/2	tanβ	A ₀	sgn(µ)
1450 GeV	175 GeV	50	0	+

LM9t175_sftsdkpyt

- High production cross section
- $\sigma_{SUSY} = 44 \text{ pb}$ (Prospino NLO)

$$\sigma_{\tilde{g}\tilde{g}} = 36.7 \text{ pb}$$

 $\tilde{g} \to q\bar{q}/g + \tilde{\chi}_2^0 \to q\bar{q}/g + \tilde{\chi}_1^0 + l^+l^-$

BR = 2.3%

Physics at the Terascale 29.04.08

Edges in mSUGRA

Statistical subtraction

Physics at the Terascale 29.04.08

SM backgrounds

$\sigma_{SUSY} = 44 \text{ pb}$

- Top pair + Jets (Alpgen)
 - σ = 830 pb
- Z+Jets (Alpgen)
 - σ = 6 nb
- W+Jets (Alpgen)
 - σ = 57 nb
- QCD (Pythia)
 - σ = 819 μb

Preselection

- 2 leptons ($p_T > 3$ (5) GeV)
- 2 jets (80 and 30 GeV E_T)
- MET of 50 GeV

- MET distribution very comparable to the SM
- Only soft cut to preserve a high signal efficiency

Cuts on four leading jets

Selection for 1 fb⁻¹

	σ [pb]	Dilepton skim	MET cut	4 jets	2 isolated leptons
LM9t175_sftsdkpyt	25,86	11392	10794	6131	330
LM9_sftsdkpyt	29,49	13189	12449	6927	447
LM1_sftsdkpyt	43,48	18755	18447	4708	379
t t+jets (NLO)	836	93718	74969	12074	306
Z+jets (0 <p⊤<300)< td=""><td>5777</td><td>13210</td><td>9351</td><td>235</td><td>57</td></p⊤<300)<>	5777	13210	9351	235	57
W+jets (0 <p⊤<300)< td=""><td>58155</td><td>63419</td><td>48294</td><td>1085</td><td>I</td></p⊤<300)<>	58155	63419	48294	1085	I
QCD	-	1,9 •10 ⁷	8,7 •10 ⁶	390895	2

Lepton isolation

- Reduction of the QCD background
- Energy in a cone around the lepton is required to be smaller than 30%

$$\Delta R = \sqrt{\Delta \eta^2 + \Delta \phi^2}$$
$$\frac{E_{cone} - E_{lept}}{E} < 0.3$$

 $\Delta R_{cone} < 0.2$

Physics at the Terascale 29.04.08

Niklas Mohr

 E_{lept}

I fb⁻¹

- 100% trigger efficiency
- Endpoint is clearly visible
- High significance of the signal
- Negative entries due to statistical subtraction

Entries 0-80 GeV	all cuts
SUSY	192
tt+jets	-2,4
Z+jets	13,6
W+jets	-1,0
QCD	١,6

Aim: Determination of the endpoint

$$S_{CL} = 26 \qquad S_{CL} = \sqrt{2\left[\left(s+b\right)\ln\left(1+\frac{s}{b}\right)-s\right]}$$

Physics at the Terascale 29.04.08

Calibration of the estimator

Physics at the Terascale 29.04.08

- All systematic uncertainties are evaluated for m_{cut}
- All cuts have been varied
 - Only significant variations are considered
 - A variation of the binning and the fit range
- Uncertainty on SM background is estimated by 20%
 - PDF, Parton Shower, Underlying Event, Pile-up, Fragmentation etc.
- Uncertainty in lepton energy scale of 2% is considered
- Uncertainty in jet energy scale of 10% is considered
- Misalignment Tracker and Muon system
 - CMS 10 pb⁻¹ scenario
 - Alignment of the detector after 10 pb⁻¹ of data
 - Conservative estimation of the misalignment

m _{cut,syst}	∆m. [GeV]	∆ m+ [GeV]
Var. of all cuts	-1,4	+0,7
SM background	-	-
Lepton energy scale	-	-
Jet energy scale	-	-
Misalignment	-1,5	+1,5

$\frac{m_{final} - m_{var}}{\sqrt{\left|\sigma_{final}^2 - \sigma_{var}^2\right|}} > 1$

Physics at the Terascale 29.04.08

Expected results for I fb⁻¹

Physics at the Terascale 29.04.08

- "wrong" theoretical model
- Theoretical value is reproduced within the error

• Different mass difference due to change in top mass

 Mass difference is reproduced within the error

Physics at the Terascale 29.04.08

- SUSY signal is visible at LM9 and LM1 with an integrated luminosity of 1 fb⁻¹
 - including misalignment (10 pb⁻¹ scenario) (for LM9)
 - 100% trigger efficiency on the final event selection (LM9)
- High significance of the signal
- Statistical error of 1,5% (LM9)
- Systematical error of 3% (LM9)
- If SUSY is realised in such a scenario: a measurement with a precision of 5% seems possible with 1 fb⁻¹

Outlook

- Determine lepton reconstruction efficiency from data
- Develop methods of background estimation from data
 - e.g. fit eµ background and look for excess in ee and µµ distribution

Trigger efficiency at LM9

Leptonic triggers 97,9%

Hadronic triggers 100%

- Quad-Jet (60 GeV)
- H_T + MET (350,65 GeV)

- Full trigger efficiency using two small sets of triggers
- No correction needs to be taken into account

Lepton selection and isolation

Physics at the Terascale 29.04.08

Background estimation from data

- If Var I and Var2 are uncorrelated
- and have separation power
 - Background can be extrapolated from D to C

$$N_C = N_D \cdot \frac{N_B}{N_A}$$

- Dilepton analysis
 - Var I: Invariant mass
- Uncorrelated
 - Transverse jet energy
 - MET (not enough separation power at LM9)
- Possible for tt+jets, Z+jets, W+jets
- QCD background isolation of leptons could be used
 - Probably not uncorrelated?

Physics at the Terascale 29.04.08

Work in progress

- Sum of E_T of four hardest jets is used
- Background is separated from signal in both variables
- Problem: do not know where the signal appears
- Could decay as well mostly via real Z boson

- Both signal and background used in the control dataset
- Almost no signal contamination in the control dataset
- Estimation of the background in bins of 5 GeV in the signal region

$$N_C = N_D \cdot \frac{N_B}{N_A}$$

DCMS Zeuthen 26.09.07

- Both signal and background used in the control dataset
- Estimation of the background in bins of 5 GeV in the signal region
- Almost no signal contamination in the control dataset

$$N_C = N_D \cdot \frac{N_B}{N_A}$$

DCMS Zeuthen 26.09.07

Work in progress

Corr = -0,028 Corr = -0,17

- ttbar background is not well separated from signal
- For ttbar events the invariant mass is not fully uncorrelated with the E_T sum of the jets
- Different variable?
 - ttbar is very similar to the background